Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add filters








Year range
1.
Asian Pacific Journal of Tropical Biomedicine ; (12): 333-342, 2022.
Article in Chinese | WPRIM | ID: wpr-950179

ABSTRACT

Objective: To explore the protective effects of anthrahydroquinone-2,6-disulfonate (AH 2 QDS) on the kidneys of paraquat (PQ) poisoned rats via the apelin-APJ pathway. Methods: Male Sprague Dawley rats were divided into four experimental groups: control, PQ, PQ+sivelestat, and PQ+AH 2 QDS. The PQ+sivelestat group served as the positive control group. The model of poisoning was established via intragastric treatment with a 20% PQ pesticide solution at 200 mg/kg. Two hours after poisoning, the PQ+sivelestat group was treated with sivelestat, while the PQ+AH 2 QDS group was given AH 2 QDS. Six rats were selected from each group on the first, third, and seventh days after poisoning and dissected after anesthesia. The PQ content of the kidneys was measured using the sodium disulfite method. Hematoxylin-eosin staining of renal tissues was performed to detect pathological changes. Apelin expression in the renal tissues was detected using immunofluorescence. Western blotting was used to detect the expression levels of the following proteins in the kidney tissues: IL-6, TNF-α, apelin-APJ (the apelin-Angiotensin receptor), NF-κB p65, caspase-1, caspase-8, glucose-regulated protein 78 (GRP78), and the C/EBP homologous protein (CHOP). In in vitro study, a PQ toxicity model was established using human tubular epithelial cells treated with standard PQ. Twenty-four hours after poisoning, sivelestat and AH 2 QDS were administered. The levels of oxidative stress in human renal tubular epithelial cells were assessed using a reactive oxygen species fluorescence probe. Results: The PQ content in the kidney tissues of the PQ group was higher than that of the PQ+AH 2 QDS group. Hematoxylin-eosin staining showed extensive hemorrhage and congestion in the renal parenchyma of the PQ group. Vacuolar degeneration of the renal tubule epithelial cells, deposition of crescent-like red staining material in renal follicles, infiltration by a few inflammatory cells, and a small number of cast formation were also observed. However, these pathological changes were less severe in the PQ+sivelestat group and the PQ+AH 2 QDS group (P<0.05). On the third day after poisoning, immunofluorescence assay showed that the level of apelin in the renal tissues was significantly higher in the PQ+AH 2 QDS group than in the PQ group. Western blotting analysis results showed that IL-6, TNF-α, NF-κB p65, caspase-1, caspase-8, GRP78, and CHOP protein levels in the PQ group were higher than in the PQ+AH 2 QDS group (P<0.05). The expression of apelin-APJ proteins in the PQ+AH 2 QDS group was higher than in the PQ+sivelestat and PQ groups (P<0.05); this difference was significant on Day 3 and Day 7. The level of oxidative stress in the renal tubular epithelial cells of the PQ+AH 2 QDS group and the PQ+sivelestat group was significantly lower than in the PQ group (P<0.05). Conclusions: This study confirms that AH 2 QDS has a protective effect on PQ-poisoned kidneys and its positive effect is superior to that of sivelestat. The mechanism of the protective effects of AH 2 QDS may be linked to reduction in cellular oxidative stress, PQ content of renal tissue, inflammatory injury, endoplasmic reticulum stress, and apoptosis. AH 2 QDS may play a role in the treatment of PQ poisoning by upregulating the expression of the apelin-APJ.

2.
Asian Pacific Journal of Tropical Medicine ; (12): 333-342, 2022.
Article in Chinese | WPRIM | ID: wpr-941570

ABSTRACT

Objective: To explore the protective effects of anthrahydroquinone-2,6-disulfonate (AH 2 QDS) on the kidneys of paraquat (PQ) poisoned rats via the apelin-APJ pathway. Methods: Male Sprague Dawley rats were divided into four experimental groups: control, PQ, PQ+sivelestat, and PQ+AH 2 QDS. The PQ+sivelestat group served as the positive control group. The model of poisoning was established via intragastric treatment with a 20% PQ pesticide solution at 200 mg/kg. Two hours after poisoning, the PQ+sivelestat group was treated with sivelestat, while the PQ+AH 2 QDS group was given AH 2 QDS. Six rats were selected from each group on the first, third, and seventh days after poisoning and dissected after anesthesia. The PQ content of the kidneys was measured using the sodium disulfite method. Hematoxylin-eosin staining of renal tissues was performed to detect pathological changes. Apelin expression in the renal tissues was detected using immunofluorescence. Western blotting was used to detect the expression levels of the following proteins in the kidney tissues: IL-6, TNF-α, apelin-APJ (the apelin-Angiotensin receptor), NF-κB p65, caspase-1, caspase-8, glucose-regulated protein 78 (GRP78), and the C/EBP homologous protein (CHOP). In in vitro study, a PQ toxicity model was established using human tubular epithelial cells treated with standard PQ. Twenty-four hours after poisoning, sivelestat and AH 2 QDS were administered. The levels of oxidative stress in human renal tubular epithelial cells were assessed using a reactive oxygen species fluorescence probe. Results: The PQ content in the kidney tissues of the PQ group was higher than that of the PQ+AH 2 QDS group. Hematoxylin-eosin staining showed extensive hemorrhage and congestion in the renal parenchyma of the PQ group. Vacuolar degeneration of the renal tubule epithelial cells, deposition of crescent-like red staining material in renal follicles, infiltration by a few inflammatory cells, and a small number of cast formation were also observed. However, these pathological changes were less severe in the PQ+sivelestat group and the PQ+AH 2 QDS group (P<0.05). On the third day after poisoning, immunofluorescence assay showed that the level of apelin in the renal tissues was significantly higher in the PQ+AH 2 QDS group than in the PQ group. Western blotting analysis results showed that IL-6, TNF-α, NF-κB p65, caspase-1, caspase-8, GRP78, and CHOP protein levels in the PQ group were higher than in the PQ+AH 2 QDS group (P<0.05). The expression of apelin-APJ proteins in the PQ+AH 2 QDS group was higher than in the PQ+sivelestat and PQ groups (P<0.05); this difference was significant on Day 3 and Day 7. The level of oxidative stress in the renal tubular epithelial cells of the PQ+AH 2 QDS group and the PQ+sivelestat group was significantly lower than in the PQ group (P<0.05). Conclusions: This study confirms that AH 2 QDS has a protective effect on PQ-poisoned kidneys and its positive effect is superior to that of sivelestat. The mechanism of the protective effects of AH 2 QDS may be linked to reduction in cellular oxidative stress, PQ content of renal tissue, inflammatory injury, endoplasmic reticulum stress, and apoptosis. AH 2 QDS may play a role in the treatment of PQ poisoning by upregulating the expression of the apelin-APJ.

3.
Asian Pacific Journal of Tropical Biomedicine ; (12): 429-439, 2021.
Article in Chinese | WPRIM | ID: wpr-950223

ABSTRACT

Objective: To explore the effect of Sirt1 on the function of endothelial progenitor cells (EPCs) in rats with chronic obstructive pulmonary disease (COPD). Methods: A rat COPD model was established via smoking and endotoxin administration for three months. The peripheral circulating EPCs were isolated by gradient centrifugation, and their functions, cell cycle distribution, apoptosis, and Sirt1 expression were examined. The function changes of EPCs in the presence or absence of Sirt1 agonist and inhibitor were estimated; meanwhile, the expressions of Sirt1, FOXO3a, NF-κB, and p53 were also evaluated. Results: The proliferation, adhesion, and migration of EPCs decreased while the apoptosis rate was increased in the COPD rats. The expression of Sirt1 protein in EPCs of the COPD group was significantly lower than that in the control group (P<0.01). The overexpression of the Sirt1 gene using a gene transfection technique or Sirt1 agonists (SRT1720) improved the proliferation, migration, and adhesion, and decreased the apoptosis of EPC. However, Sirt1 inhibitor (EX527) decreased EPC functions in the COPD group. The effect of Sirt1 expression on EPC function may be related to reduction of FOXO3a and increase of NF-κB and p53 activity. Conclusions: Increased expression of Sirt1 can improve the proliferation and migration of EPCs and reduce their apoptosis in COPD rats. This change may be related to FOXO3a, NF-κB, and p53 signaling pathways.

4.
Asian Pacific Journal of Tropical Medicine ; (12): 429-439, 2021.
Article in Chinese | WPRIM | ID: wpr-942787

ABSTRACT

Objective: To explore the effect of Sirt1 on the function of endothelial progenitor cells (EPCs) in rats with chronic obstructive pulmonary disease (COPD). Methods: A rat COPD model was established via smoking and endotoxin administration for three months. The peripheral circulating EPCs were isolated by gradient centrifugation, and their functions, cell cycle distribution, apoptosis, and Sirt1 expression were examined. The function changes of EPCs in the presence or absence of Sirt1 agonist and inhibitor were estimated; meanwhile, the expressions of Sirt1, FOXO3a, NF-κB, and p53 were also evaluated. Results: The proliferation, adhesion, and migration of EPCs decreased while the apoptosis rate was increased in the COPD rats. The expression of Sirt1 protein in EPCs of the COPD group was significantly lower than that in the control group (P<0.01). The overexpression of the Sirt1 gene using a gene transfection technique or Sirt1 agonists (SRT1720) improved the proliferation, migration, and adhesion, and decreased the apoptosis of EPC. However, Sirt1 inhibitor (EX527) decreased EPC functions in the COPD group. The effect of Sirt1 expression on EPC function may be related to reduction of FOXO3a and increase of NF-κB and p53 activity. Conclusions: Increased expression of Sirt1 can improve the proliferation and migration of EPCs and reduce their apoptosis in COPD rats. This change may be related to FOXO3a, NF-κB, and p53 signaling pathways.

5.
Acta Physiologica Sinica ; (6): 631-642, 2020.
Article in Chinese | WPRIM | ID: wpr-878208

ABSTRACT

The aim of the present study was to investigate the effects of exercises with different durations and intensities on mitochondrial autophagy and FUNDC1 in rat skeletal muscles. Sixty male Sprague-Dawley rats were randomly divided into 2- and 4-week control groups (Con), moderate-intensity exercise groups (M-ex groups, treadmill exercise, 16 m/min, 1 h/d, 6 d/week), and high-intensity exercise groups (Hi-ex groups, treadmill exercise, 35 m/min, 20 min/d, 6 d/week). The bilateral soleus muscles were separated after the intervention, and paraffin sections were prepared for transmission electron microscopy. ELISA method was used to detect the content of citrate synthase (CS). The co-localizations of microtubule-associated protein 1 light chain 3 (LC3)/cytochrome c oxidase IV (COX-IV), FUNDC1/COX-IV and LC3/FUNDC1 were observed by immunofluorescent staining in frozen sections. The skeletal muscle mitochondria were extracted, and the expression of autophagy-related proteins, including AMPKα, p-AMPKα, Unc-51 like kinase 1 (ULK1), FUNDC1, LC3 and p62, were detected by Western blot. The results showed that exercise increased mitochondrial function, i.e. peroxisome proliferator-activated receptor γ co-activator-1α (PGC-1α), COX-I protein expression levels and CS content. There was no difference of mitochondrial function parameters between 2-week M-ex and 2-week Hi-ex groups, while mitochondrial function of 4-weeks Hi-ex group was significantly lower than that of 4-week M-ex group. Under the same exercise intensity, mitochondrial autophagy activation in skeletal muscle of 4-week exercise was higher than that in 2-week exercise group; Under the same duration of exercise, mitochondrial autophagy activation of Hi-ex group was higher than that in M-ex group. Both 2- and 4-week exercise intervention increased LC3/COX-IV, COX-IV/FUNDC1, and FUNDC1/LC3 co-localizations. Exercise increased LC3-II/LC3-I ratio, down-regulated p62 protein expression level, up-regulated FUNDC1, ULK1 protein expression levels and AMPKα phosphorylation, and the changes of these proteins in 4-week Hi-ex group were significantly greater than those in 4-week M-ex group. These results suggest exercise induces mitochondrial autophagy in skeletal muscles, and the activity of autophagy is related to the duration and intensity of exercise. The induction mechanism of exercise may involve the mediation of FUNDC1 expression through AMPK-ULK1 pathway.


Subject(s)
Animals , Humans , Male , Rats , Autophagy , Exercise Therapy , Membrane Proteins/physiology , Mitochondria , Mitochondrial Proteins/physiology , Muscle, Skeletal/metabolism , Rats, Sprague-Dawley
6.
Asian Pacific Journal of Tropical Medicine ; (12): 235-239, 2018.
Article in Chinese | WPRIM | ID: wpr-972475

ABSTRACT

Objective: To study the effects of regenerated tissue extracts after liver injury on the proliferation, differentiation, migration and invasion of SK-HEP1 cells. Methods: Regenerated tissue extracts after liver injury were used to induce SK-HEP1 cells after enrichment, their effects on the proliferation, differentiation, migration and invasion of SK-HEP1 cells were observed through in vitro cell culture, MTT, flow cytometry and transwell assays. Results: In response to the action of regenerated tissue extracts after liver injury, SK-HEP1 cells were blocked in G

7.
Asian Pacific Journal of Tropical Medicine ; (12): 235-239, 2018.
Article in English | WPRIM | ID: wpr-825839

ABSTRACT

Objective:To study the effects of regenerated tissue extracts after liver injury on the proliferation, differentiation, migration and invasion of SK-HEP1 cells.Methods:Regenerated tissue extracts after liver injury were used to induce SK-HEP1 cells after enrichment, their effects on the proliferation, differentiation, migration and invasion of SK-HEP1 cells were observed through in vitro cell culture, MTT, flow cytometry and transwell assays.Results:In response to the action of regenerated tissue extracts after liver injury, SK-HEP1 cells were blocked in GConclusions:To a certain extent, regenerated tissue extracts after liver injury can inhibit the proliferation, differentiation, migration and invasion of hepatoma cells, showing an important potential of being a differentiating agent for the treatment of liver cancer.

8.
Asian Journal of Andrology ; (6): 920-924, 2016.
Article in Chinese | WPRIM | ID: wpr-842820

ABSTRACT

β-cryptoxanthin (CRY), a major carotenoid of potential interest for health, is obtained naturally from orange vegetables and fruits. A few research studies have reported that CRY could decrease oxidative stress and germ cell apoptosis. The purpose of this study was to examine the effects of CRY on acute cadmium chloride (CdCl 2 )-induced oxidative damage in rat testes. For this study, 24 rats were divided into four groups, one of which serves as a control group that received intraperitoneal (i.p.) injections of corn oil and physiological saline. The other rats were i.p. injected with CRY (10 μg kg-1 ) every 8 h, beginning 8 h before CdCl 2 (2.0 mg kg-1 ) treatment. The pathological and TUNEL findings revealed that CRY ameliorated the Cd-induced testicular histological changes and germ cell apoptosis in the rats. Furthermore, the Cd-induced decrease in the testicular testosterone (T) level was attenuated after CRY administration (P < 0.05). The administration of CRY significantly reversed the Cd-induced increases in the lipid peroxide (LPO) and malondialdehyde (MDA) levels (P < 0.01). The testicular antioxidants superoxide dismutase (SOD), catalase (CAT) and glutathione (GSH) were decreased by treatment with Cd alone but were restored by CRY co-treatment. These results demonstrated that the application of CRY can enhance the tolerance of rats to Cd-induced oxidative damage and suggest that it has promised as a pharmacological agent to protect against Cd-induced testicular toxicity.

SELECTION OF CITATIONS
SEARCH DETAIL